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Abstract
We have developed a statistical theory for columnar aggregates of semi-flexible
polyelectrolytes. The applicability of previous, simplified theories was limited to
polyelectrolytes with unrealistically high effective charge and, hence, with strongly suppressed
thermal undulations. To avoid this problem, we utilized more consistent approximations for
short-range image–charge forces and steric confinement, resulting in new predictions for
polyelectrolytes with more practically important, lower effective linear charge densities. In the
present paper, we focus on aggregates of wormlike chains with uniform surface charge density,
although the same basic ideas may also be applied to structured polyelectrolytes. We find that
undulations effectively extend the range of electrostatic interactions between polyelectrolytes
upon decreasing aggregate density, in qualitative agreement with previous theories. However, in
contrast to previous theories, we demonstrate that steric confinement provides the dominant
rather than a negligible contribution at higher aggregate densities and significant quantitative
corrections at lower densities, resulting in osmotic pressure isotherms that drastically differ
from previous predictions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semi-flexible polyelectrolytes play an important role in
living systems and they are utilized in many industrial
applications [1, 2]. Their interactions are often studied
in condensed columnar assemblies; most notably, examples
include DNA [3–6], actin [3, 7–10], xanthan [4, 11] and some
viruses such as TMV [3, 12, 13]. Aggregation of semi-flexible
polyelectrolytes into columnar assemblies is also observed in
nature, for instance, DNA in viral capsids [14–16] and actin
filaments in microvilli [17]. The aggregation may be brought
about by condensing agents [3, 18, 19] or osmotic pressure [5].
Intermolecular interactions determine physical properties of

the aggregates [20] and play a crucial role in such phenomena
as packing of meters of DNA inside a cell [21] or ejection of
DNA from viruses [16].

It has long been noted that the interplay between
interaction forces and undulations may be important for the
physics of assemblies of semi-flexible polymers [22–24]. An
early model of DNA aggregates approximated this interplay
by treating a DNA molecule as a flexible chain confined
within a hard cylinder with a radius dependent on the
strength of the interaction [25], but this approximation
did not fit the experimental data [26]. In [26] a more
sophisticated model of a Gaussian chain confined by a
harmonic potential was considered. The Gaussian chain
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a.) b.)

Figure 1. Pictures denoting: (a) part of an undulating molecule with respect to the z axis; the orientation of its mean major axis. The curved
dotted line represents the fluctuating position of the molecular axis and ψ(z) the tilt angle for one molecule is the angle the molecular axis
makes with the z axis. (b) A cross section of the undulating hexagonal lattice. The large dots are mean positions of the major axis of each
molecule, which form the hexagonal lattice with spacing R0. The small dots indicate the actual positions of each molecular axis. The
deviation of an axis from its mean value for a molecule sitting at site { j, l} is given by r j,l(z). For each nearest neighbor about { j, l} is
numbered from 1 to 6 with the index i . Then, each interaxial separation can be expressed as R0 + δr j,l,i (z), where for instance the change in
interaxial separation δr j,l,1(z) of a molecule with respect to its nearest neighbor i = 1 may be expressed as δr j,l,i (z) = |R j−1,l+1 − R j,l

+ r j−1,l+1(z)− r j,l(z)| − R0, where R j,l are the position vectors of each mean axis in the lattice.

model affords a relatively simple analytical solution, but the
wormlike chain (WLC) model, based on elastic rod theory,
provides a better description of the conformation of semi-
flexible polyelectrolytes [27, 28]. Theories of wormlike chains
confined in a harmonic potential have been described in, for
instance [29–33]. In [32] a variational approximation was
developed that combined the confined WLC model [29, 31]
with a more consistent description of the exponentially
decaying electrostatic interaction between polyelectrolytes.

The latter polyelectrolyte theories focused primarily on
the interplay between electrostatic forces and undulations
at large surface separations, neglecting or not consistently
incorporating shorter-range image–charge forces and hard-
core collisions between polyelectrolyte molecules4. However,
because undulations bring semi-flexible polyelectrolytes into
close contact, short-range forces are likely not to be negligible.
Here, we demonstrate that these forces may qualitatively alter
the physical properties of aggregates, regardless of the average
surface separation.

We construct a variational theory for quasi-harmonic
undulations, combining the ideas proposed in [29] and [32]
with a more consistent treatment of electrostatics and hard-
core collisions, at large undulation amplitudes, and a self-
consistent calculation of the undulation amplitude based on the
Gibbs–Bogoliubov inequality. Within this theory, we calculate
pertinent pair correlation functions for the undulations and
osmotic pressures of polyelectrolyte aggregates. In contrast to
commonly held views, we find that undulations play a crucial
role, not only in highly hydrated aggregates at large surface
separations between the molecules, but also in dense columnar
assemblies at surface separations comparable to, or smaller

4 In [24] short-range hydration forces were included in the harmonic
approximation, but image–charge interaction and steric interactions were still
neglected.

than, the Debye screening length. In the present paper we
discuss the simpler case of interactions between cylindrical
wormlike chains with uniform surface charge density. We
will describe the more complex interplay between undulations
and interactions for structured, helical polyelectrolytes in a
separate study.

2. The model

Consider a columnar assembly of uniformly charged, semi-
flexible polyelectrolytes that exhibit small displacements
r j,l(z) from a hexagonal lattice parallel to the z axis
(figure 1(b)). The indices j and l label the molecules in the x
and y directions, correspondingly (figure 1(b)). Provided that
the displacement r j,l(z) is confined within one lattice spacing
(i.e. molecules do not entangle) and the tilt angle ψ j,l of
each molecule is small (|ψ j,l | � 1), the energy cost of the
undulations may be approximated by

δE{r j,l(z)} = δEb{r j,l(z)}+δEel{r j,l(z)}+δEst{r j,l(z)}, (1)

where δEb{r j,l(z)}, δEel{r j,l(z)} and δEst{r j,l(z)} are the
energetic costs of bending, the energy of electrostatic
interactions between molecules and the energy attributable
to steric (hard-core) collisions between the molecules,
respectively. For the purpose of the present study, we neglect
entanglement and sharp bending of the molecules, which
may introduce additional corrections to the free energy of
polyelectrolyte aggregates [34].

We describe the cost of bending within the wormlike chain
approximation [27, 28] as

δEb{r j,l(z)} =
∑

j,l

∫ L

0
dz

lb
p

2

(
d2r j,l(z)

dz2

)2

, (2)

2
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where L is the total length and lb
p is the persistence length of

the molecules.

2.1. Electrostatic energy

We calculate the electrostatic cost of undulations by pairwise
summation of interactions of each molecule with its six nearest
neighbors [20]:

δEel{r j,l(z)} =
1
2

∑

j,l

6∑

i=1

∫ L

0
dz[ucyl(R0, δr j,l,i (z))− ucyl(R0, 0)], (3)

where [35]

ucyl(R0, δr) ≈ 2ξ 2
eff

lB

{
K0[κ(R0 + δr)]

−
∞∑

j=−∞
(K j [κ(R0 + δr)])2 I ′

j (κa)

K ′
j (κa)

}
; (4)

ξeff = lB

l̃c · κa · K1(κa)
; (5)

ξeff is a dimensionless effective Manning parameter that can be
calculated, for example, as described in [45]; lB is the Bjerrum
length (7 Å in water); l̃c is the effective distance per unit
charge along the molecules, which accounts for partial charge
neutralization by bound/condensed counterions (e.g. within the
Manning model l̃c = lB, when the distance per unit fixed/bare
charge lc is less than lB); a is the molecular radius (we assume
that the water-impenetrable core of the molecule has a low
dielectric constant); κ is the inverse screening length in the
assembly; In(x), Kn(x), I ′

n(x) and K ′
n(x) are the modified

Bessel functions and their derivatives, respectively; the index
i labels the six nearest neighbors of each molecule ( j, l); and
δr j,l,i (z) is the change in the interaxial distance between the
molecule ( j, l) and its neighbors due to undulations. The
second term in equation (4) describes the contribution of
image–charge forces associated with dielectric cores of the
molecules. For simplicity, hereafter, all energies and free
energies are dimensionless, measured in units of the thermal
energy kBT .

Note that κ is generally larger than the inverse Debye
screening length κD in the surrounding electrolyte solution
outside the aggregate, because of the accumulation of
additional counterions within the assembly [20]. The
relationship between κ and κD can be approximated within the
cylindrical cell model, in which the hexagonal Wigner–Seitz
cell of each molecule is replaced with a cylinder of the same
volume. In this model [36]:

κ = κD

√
cosh(eϕs/kBT ), (6)

tanh

(
eϕs

kBT

)
= 2ξeff

[I0(κRs)K1(κRs)+ I1(κRs)K0(κRs)]
[I1(κRs)− K1(κRs)

I1(κa)
K1(κa) ]

,

(7)
where ϕs is the electrostatic potential at the surface of the
effective cylindrical Wigner–Seitz cell and

Rs = R0

√√
3/2π (8)

is the radius of this cell. Note that the present, simplified
form of equations (6)–(8) is appropriate only for 1:1 electrolyte
solutions; more general expressions can be found in [36].

2.2. Steric confinement (Helfrich–Harbich model)

To model steric confinement, we utilize the approximation
proposed by Helfrich and Harbich [25, 29]. Specifically, we
replace δEst{r j,l(z)} with an effective Gaussian confinement
potential:

δEeff
st {r(z)} = α0

2

∫ L

0
dz [r(z)2], (9)

in which the parameter α0 is selected to provide the correct
mean squared displacement for molecules. Since the maximum
displacement is ∼R0 − 2a, we may expect [29]

〈r(z)2〉 = μ(R0 − 2a)2. (10)

Here μ < 1 is a dimensionless constant, e.g. simulations for a
confined wormlike chain suggest that μ ≈ 1/2.5

Calculation of 〈r(z)2〉 with the energy functional given by
equation (9) and a comparison with equation (10) then yields

α0 = 1

22/3μ4/3(R0 − 2a)8/3(lb
p)

1/3
. (11)

2.3. Variational approximation

To calculate the free energy and correlation functions for the
undulations, we utilize a variational approximation, in which
we replace δE{r j,l(z)} with an effective energy:

δEeff{r j,l(z)} = 1

2

∑

j,l

∫ L

0
dz

[
lb
p

(
d2r j,l(z)

dz2

)2

+ αr j,l(z)
2

]
,

(12)
where α is a variational parameter. We then define the
following free energy functional:

Fund ≈ − ln δZeff + 〈δE{r j,l(z)} − δEeff{r j,l(z)}〉eff, (13)

where

δZeff =
∏

j,l

∫
Dr j,l(z) exp[−δEeff{r j,l(z)}] (14)

is the partition function for the effective energy and
〈 〉eff indicates averaging with the statistical weight of
exp[−δEeff{r j,l(z)}], i.e.

〈 f {r j,l(z)}〉eff ≡
1

δZeff

∏

j,l

∫
Dr j,l(z) f {r j,l(z)} exp[−δEeff{r j,l(z)}] (15)

for any functional f {r j,l(z)}. Here,
∫

Dr j,l(z) corresponds to
path integration [38] over both components of the displacement
vector r j,l(z).

5 For purely steric interactions this approximation leads to a free energy
Fs = ckBT L/D2/3(lb

p )
1/3, where D is the effective diameter of the cylinder.

From simulations [37], the value of the constant is c = 2.46 ± 0.07. If we
suppose that the confinement diameter is D = 2(R0 − 2a) and μ = 1/2, we
find c � 2.51, in good agreement with the simulation results.

3
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The Gibbs–Bogoliubov inequality [39] states that the
right-hand side of equation (13) is always larger or equal to
the exact free energy at any α. Therefore, we approximate the
undulation free energy by the value of Fund minimized with
respect to α.

As any model with unlimited fluctuations, this approxi-
mation effectively allows the cores of the molecules to overlap
(e.g. at δr j,l,i (z) < 2a − R0). Within this unphysical over-
lap region, δEel{r j,l(z)} is not defined; it has to be put into the
model artificially. In previously used models [24, 32, 33], the
expression for δEel{r j,l(z)} derived outside of the overlap was
simply extended into the overlap region. As long as the contri-
bution of this region to the free energy and relevant correlation
functions are small, the unphysical overlap does not present a
problem. However, this may not always be the case.

To avoid the latter problem, we define δEel{r j,l(z)} in such
a way that it does not generate any artificial forces within the
unphysical overlap region or at the boundary of this region.
Specifically, δEel{r j,l(z)} remains constant throughout this
region and equal to its value at the region boundary, i.e. we
replace equation (3) with

δEel{r j,l(z)} ≈ 1
2

∑

j,l

6∑

i=1

∫ L

0
dz [δu j,l,i (R0, z)], (16)

where

δu j,l,i (R0, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ucyl(R0, δr j,l,i (z))− ucyl(R0, 0),

|δr j,l,i (z)| � R0 − 2a

ucyl(R0, R0 − 2a)− ucyl(R0, 0),

δr j,l,i (z) > R0 − 2a

ucyl(R0, 2a − R0)− ucyl(R0, 0),

δr j,l,i (z) < 2a − R0.

(17)

In addition, provided that 2κa � 1 and δr/R0 � 1, we may
approximate equation (4) with

ucyl(R0, δr) ≈ ξ 2
eff

√
2π exp[−κ(R0 + δr)]

lB(κR0)1/2

+ ξ 2
effπ	0 exp[−2κ(R0 + δr)]

lB(κR0)
(18)

where
	0 = −

∑

j

I ′
j (κa)/K ′

j(κa). (19)

Equations (12)–(14) combined with (1), (2), (9), (11), (16)
and (17) fully define the model we use for calculating
all relevant correlation functions and the contribution of
undulations to the aggregate free energy.

2.4. Osmotic pressure

The effective osmotic pressure of the aggregate is given by


 = 
0 +
und, (20)

where


0 = κ2
DkBT

4πlB

[
cosh

(
eϕs

kBT

)
− 1

]
(21)

is the osmotic pressure of an aggregate of straight
molecules [40] and


und = −kBT

(
∂Fund

∂Vw

)

κ

= − kBT

N L R0

√
3

(
∂Fund

∂R0

)

κ

(22)

is the contribution from undulations. In equation (22), the
kBT prefactor provides dimensionality to the dimensionless
undulation free energy Fund, and Fund is calculated from
equation (13) and by minimization with respect to α. The
partial derivative of Fund is taken at fixed κ to account for the
averaging over the counterion degrees of freedom.

3. Results

3.1. Pair correlation functions

Within our model, the pair correlation function for undulations
is given by (see the appendix)

〈r j,l(z)rm,n(z
′)〉 = δ j,mδl,n G(z − z′), (23)

where

G(z − z′) = d2
√

2 cos

( |z − z′|√
2λB

− π

4

)
exp

(
−|z − z ′|√

2λB

)
,

(24)

d = (4α3lb
p)

−1/8 (25)

is the rms undulation amplitude and

λB = (
√

2d2lb
p)

1/3 (26)

is the undulation correlation length (first introduced by
Odijk [41, 42]).

Note that our approximation for the electrostatic energy
is valid only at small fluctuations of the tilt angle ψ of each
molecule with respect to the vertical position (figure 1(A)). The
mean square amplitude of the latter fluctuations is given by (see
the appendix)

〈ψ2〉 = 1

2

〈(
dr(z)

dz

)2
〉

=
(

d

4lb
p

)2/3

, (27)

indicating that the present theory is valid at
(

d

4lb
p

)1/3

� 1. (28)

It may be possible to account for undulations with larger tilt
angles utilizing the ideas developed in [43], but such a theory
would be substantially more complicated.

3.2. Free energy and amplitude of undulations

As shown in the appendix, the calculation of Fund from
equations (1)–(3), (9), (11), (12)–(18) and (25) yields

Fund

N L
≈ 1

25/3d2/3(lb
p)

1/3

[
3 + d8/3

μ4/3(R0 − 2a)8/3

]

+ 3ξ 2
eff

√
2π exp(−κR0)

lB(κR0)1/2
γ (κ(R0 − 2a), κd)

+ 3ξ 2
effπ	0 exp(−2κR0)

lB(κR0)
γ (2κ(R0 − 2a), 2κd) (29)

4
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Figure 2. Polyelectrolyte undulations in aggregates. (A) Dependence of the rms undulation amplitude d on average surface separation
between the molecules (R0 − 2a) at different values of the renormalized Manning parameter ξ = lB/l̃c; calculated with κ self-consistently
determined from equations (6)–(8) (solid lines) and with κ = κD (dotted lines). Although κ rapidly increases with decreasing surface
separation (inset), the effect of this change in κ on the undulation amplitude is relatively minor even at large ξ . Line colors in the inset
correspond to the same ξ as in the main panel. (B) Undulation amplitude calculated within our model (equation (31), solid lines) and within
the previously proposed [32] approximation for highly charged polyelectrolytes (equation (33), dashed lines). The following parameters were
used for all calculations: 1/κD = 7 Å, a = 10.5 Å (2κDa = 3). These values and κDlb

p = 71 (lb
p ≈ 500 Å) correspond to DNA in physiological

saline.

where

γ (x, y) = −1 + cosh(x)

[
1 − erf

(
x

y
√

2

)]

+ 1

2
e

y2

2

[
erf

(
x

y
√

2
− y√

2

)
+ erf

(
x

y
√

2
+ y√

2

)]
. (30)

We expressed Fund as a function of the rms undulation
amplitude d rather than as a function of the variational
parameter α by utilizing equation (25), which establishes a
relationship between d and α. Minimization of Fund with
respect to α is equivalent to minimization with respect to d .
From this minimization we find

lB

22/3κ2d8/3(lb
p)

1/3

[
1 − d8/3

μ4/3(R0 − 2a)8/3

]

= 3
√

2πξ 2
eff exp(−κR0)

(κR0)1/2
η(κ(R0 − 2a), κd)

+ 12πξ 2
eff	0 exp(−2κR0)

(κR0)
η(2κ(R0 − 2a), 2κd) (31)

where

η(x, y) = 1

2
e

y2

2

[
erf

(
1√
2

(
x

y
+y

))
+erf

(
1√
2

(
x

y
−y

))]

− 2

y
√

2π
sinh(x) exp

(
− x2

2y2

)
. (32)

One may now calculate the undulation amplitude by
solving equations (31) and (32) with respect to d . For
uncharged molecules (ξeff = 0), we recover d2 ≡ 〈r2

j,l〉 =
μ(R0 − 2a)2 (cf, equation (10)). Because η(x, y) is positively
defined, electrostatic repulsion between charged molecules
reduces the undulation amplitude as one might expect.

Figure 2 illustrates the dependence of the undulation
amplitude d on the average surface-to-surface separation
between the molecules (R0 − 2a) at different linear charge
densities ξ = lB/l̃c (figure 2(A)) and different bending
persistence lengths lb

p (figure 2(B)). The results are represented

in dimensionless form, in which they are nearly independent of
the specific values of κD and a.

As follows from equation (31), d depends explicitly on ξ
and lb

p through a single parameter, ξ 2(lb
p)

1/3. Although d also
depends implicitly on ξ through κ (figure 2(A), inset), the latter
effect is weak for moderately charged molecules (ξ < 2), as
shown by the dotted curve in figure 2(A). For such molecules,
increasing the charge density (figure 2(A)) and increasing the
persistence length (figure 2(B)) have similar effects on the
undulation amplitude.

3.3. Highly charged polyelectrolytes

Formally, equations (29)–(32) can be simplified for highly
charged molecules in the case of strong electrostatic
confinement (d2 � μ(R0 − 2a)2, κd2 � R0 − 2a) and
negligible image–charge forces. In this case, γ (x, y) ≈
η(x, y) ≈ ey2/2 and

κlB

3
√

2πξ 2
eff(4κlb

p)
1/3

≈ (κd)8/3
exp(−κR0 + κ2d2/2)

(κR0)1/2
. (33)

This equation is similar to the one reported in [32], except
the left-hand side in our case is larger by a factor of 3/2 and we
do not assume κ ≈ κD. The numerical discrepancy appears to
be related to the difference between the ad hoc approximation
for the free energy in [32] and the more rigorous approximation
based on the Gibbs–Bogoliubov inequality utilized in the
present work.

Equation (33) works reasonably well at ξ�1 (figure 2(B)).
At ξ ∼ 1, equation (33) fails in two ways: (i) at
surface separations up to ∼1/κD, the undulation amplitude
is determined primarily by steric confinement even for very
rigid polyelectrolytes. At these distances, equation (33)
predicts unphysically large d , exceeding the undulation
amplitude for uncharged molecules (which is restricted by
steric collisions). As a result, it predicts a large unphysical
enhancement of the mean electrostatic force. (ii) At large

5
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Figure 3. Components of osmotic pressure in polyelectrolyte aggregates. Note that undulations are important both at large and small surface
separations, shifting the whole osmotic pressure curve (
) compared to the osmotic pressure in aggregates of straight, infinitely rigid rods
(=
0). The calculations were performed with the same parameter values as in figure 2. Note that κ2

DkBT/lB ≈ 12 MPa = 120 bar at
κ−1

D ≈ lB ≈ 7 Å.

separations, equation (33) strongly underestimates d for
flexible polyelectrolytes; it does not consistently account for
the steric confinement, extending the exponential electrostatic
interaction into the region where the molecules overlap (see
also the discussion of equations (16) and (17)). Numerical
comparison of equations (31) and (32) with equation (33)
suggests that neither steric confinement nor image forces can
be neglected for flexible polyelectrolytes with ξ ∼ 1 at any
separation.

3.4. Osmotic pressure

The aggregate osmotic pressure is given by equations (20)–
(22). After substitution of equations (29) and (30) into
equation (22) we find that the contribution of undulations to
the osmotic pressure is described by


und = 
st
und +
el

und, (34)

where


st
und ≈ 24/3

3
√

3
kBT

d2

μ4/3(lb
p)

1/3 R0(R0 − 2a)11/3
(35)

results from the steric collisions between the molecules and


els
und ≈ √

3kBT
κξ 2

eff

R0lB

[√
2π exp(−κR0)

(κR0)1/2
χ(κ(R0 − 2a), κd)

+ 2π	0 exp(−2κR)

(κR0)
χ(2κ (R0 − 2a) , 2κd)

]
, (36)

with

χ(x, y) = −1 + e−x

[
1 − erf

(
x

y
√

2

)]

+ 1

2
e

y2

2

[
erf

(
x

y
√

2
− y√

2

)
+ erf

(
x

y
√

2
+ y√

2

)]
, (37)

is the electrostatic component of the undulation osmotic
pressure.

As illustrated in figure 3, undulations provide the
dominant contribution to the osmotic pressure at small and
large separations, regardless of polyelectrolyte charge and
rigidity. At small separations, via steric collisions, the entropic
cost associated with the elimination of undulations diverges

as the separation between molecules approaches zero, while
the electrostatic interaction energy remains finite. At large
separations, undulations extend and enhance the short-range
electrostatic repulsion by bringing parts of the molecules much
closer together. Although, in this case, 
st

und is small compared
with 
els

und, steric collisions still play an important role in
limiting electrostatic interactions, reducing the undulation
amplitude and limiting the enhancement of the electrostatic
interaction (through the erf functions in equation (37)).

4. Discussion

The present study suggests that undulations significantly
contribute to interactions between polyelectrolytes at all
surface separations, even in well-ordered columnar aggregates
(figure 3). The undulations become negligible only for rigid,
highly charged (ξ � 1) polyelectrolytes and even then only
at surface separations close to 1/κD, which are not common
conditions since counterion condensation and binding reduce
ξ in polyelectrolytes with a high density of fixed surface
charges. Indeed, ξ � 1 for all polyelectrolytes in the limit of
infinitely dilute salt [44]. Large ξ is possible only at finite salt
concentrations in the absence of counterions that may strongly
bind to the polyelectrolyte [45].

The effect of enhancement of electrostatic interactions
by undulations at large separations was well recognized
before us [24, 26, 32]. However, the contribution from
undulations at intermediate and small separations was not. We
now find that, depending on the polyelectrolyte charge and
rigidity, undulations may significantly shift the whole osmotic
pressure curve. Figures 3(A) and (B) illustrate this effect for
uniformly charged wormlike chains with DNA-like diameter
and rigidity at physiological ionic strength. The value of
ξ = 0.5 corresponds to 87% neutralization of DNA charge by
counterions, a value that models the binding (or condensation)
of Ca2+, Mg2+ and other divalent and polyvalent counterions
under physiological conditions; ξ = 2 corresponds to 50%
neutralization of DNA charge, which approximates counterion
condensation in monovalent salt solutions at physiological
ionic strength [20, 45, 46].

These findings are in sharp contrast with the commonly
held view [26] that undulations are important only in hydrated
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aggregates at large separations. Our model differs from
previous theories in several aspects, e.g. it accounts for
image–charge forces due to the water-impermeable cores
of polyelectrolyte molecules. However, its most important
distinction, primarily responsible for the discrepancy, is a more
consistent treatment of steric collisions between the molecules.
Previous theories [24, 26, 32, 33] effectively presumed a purely
electrostatic suppression of otherwise unlimited undulations,
resulting in an infinite undulation amplitude for uncharged
molecules and a finite, nonzero undulation amplitude at zero
surface separation between charged molecules. Our model
accounts for steric confinement of undulations by hard-core
collisions, introducing the corresponding steric confinement
energy based on the idea proposed by Helfrich and Harbich
for uncharged wormlike chains [29]. Like the previous
theories, our model is based on a quasi-Gaussian description
of undulations, but it captures the limiting cases of uncharged
molecules and small surface separations (figure 2).

In our calculations, we have assumed local hexagonal
packing of the molecules in a columnar assembly. We should
bear in mind, however, that undulations may induce a melting
(deconfinement) phase transition at d = cR0 (the Lindeman
criterion), where the constant c has been estimated to be
c ∼ 0.15–0.48 [24, 33, 47]. A theory for this transition
was proposed in [23]. It included an estimate of steric
interactions, but it was based on an oversimplified description
of the hexagonal phase and electrostatic interactions. Perhaps
our work in conjunction with [23] may form the basis of a more
accurate theory6.

We believe that the present study makes an important step
towards a better understanding of the physics of interactions
between uniformly charged wormlike chains in a continuum
electrolyte solution with point-like, weakly coupled salt ions.
At the same time, it is worthwhile keeping in mind the
limitations of such a description for real polyelectrolytes. This
description is likely to be reasonable, at least qualitatively,
when the distance scales for neglected effects (e.g. ion size)
are smaller than the pertinent characteristic lengths in the
theory, e.g. the effective screening length and surface–surface
separation7.

Equations (34)–(37) provide a recipe for understanding
the physics of osmotic pressures in polyelectrolyte aggregates.
The osmotic pressure is not just a commonly used method
for studying such aggregates (see, e.g., [20, 48, 49] and
references therein) but also a functionally important property
of cartilage and other natural and engineered systems [50–52].
Equations (34)–(37) predict osmotic pressures (figure 3) that
are qualitatively and semi-quantitatively consistent with the
measurements [53, 54], but we urge caution in more detailed
quantitative comparisons with experiments. Equations (34)–
(37) have not been designed for and may not be sufficiently
accurate for analysis of experimental data in specific cases.
For the latter purpose, the approximations of uniform surface

6 For instance, an additional term, β(dr j,l(z)/dz)2, may be introduced into
our effective theory (equation (12)) to describe nematic aggregates in which
we may no longer assume that ψ̄ � 1. Here β is the order parameter for
nematic ordering [23].
7 At small surface–surface separations, factors like the discreteness of the
solvent may become important.

charge density and hexagonal packing may not be appropriate;
and these equations may have to be modified to account for
specific details of the system under study.

One factor that has to be taken into account for practical
applications is the polyelectrolyte structure, particularly when
the distance between regularly organized surface charges
exceeds the effective screening length inside aggregates (3–
10 Å in typical experiments). In the latter case, the uniform
surface charge approximation may, for example, severely
underestimate image–charge forces and completely miss
crucially important effects associated with mutual alignment
of the molecules [20]. We will illustrate these effects and ways
to modify the model to account for them in a separate study
of DNA, for which the surface charge periodicity defined by
the 34 Å helical pitch is much larger than the screening length,
resulting in rather nontrivial effects of undulations on helix-
specific interactions.

Similarly, the extent and patterns of counterion bind-
ing/condensation may need to be treated at a more sophisti-
cated level than simply by employing an effective Manning pa-
rameter, e.g. long-range correlations between multi- and poly-
valent ions at the polyelectrolyte surface may need to be ex-
plicitly incorporated into the theory, when such counterions are
present in the solution [55]. Work in this direction is currently
in progress.

5. Conclusions

(1) In contrast to previous models, the present theory
describes the intermolecular interactions within an
assembly of undulating, semi-flexible polyelectrolytes for
both the limiting cases of uncharged and highly charged
molecules as well as for polyelectrolytes with more
practically important, intermediate linear charge densities.

(2) In the limit of small surface separations, hard-core col-
lisions provide the dominant interaction between undu-
lating, uniformly charged, semi-flexible polyelectrolytes
confined in a columnar aggregate, regardless of the poly-
electrolyte charge density.

(3) At effective linear charge densities comparable to
or smaller than one elementary charge per Bjerrum
length, the steric confinement due to hard-core collisions
significantly affects aggregate osmotic pressures at all
interaxial separations.
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Appendix

A.1. Correlation functions

After representing r j,l(z) by Fourier series:

r j,l(z) =
∑

k

r̃ j,le
ikz , (A.1)
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the expression for the effective free energy (equation (12)) can
be rewritten as

δEeff{r j,l(k)} = L

2

∑

j,l

∑

k

(lb
pk4 + α)r̃ j,l(k)r̃ j,l(−k). (A.2)

Applying the equipartition theorem [56]:

〈r̃ j,l(k)r̃n,m(−k)〉 = 2δ j,nδl,m

L(lb
pk4 + α)

, (A.3)

we then find

〈(r j,l(z)− r j,l(z
′))2〉 = 2G(0)− 2G(z − z ′), (A.4)

where (in the limit of L → ∞)

G(z − z ′) = 1

π

∫ ∞

−∞
dk

exp(ik(z − z ′))
lb
pk4 + α

. (A.5)

Contour integration of equation (A.5) in the top half on the
complex plane yields

G(z − z ′) = (λB)
3

lb
p

exp

(
−|z − z′|√

2λB

)
cos

( |z − z′|√
2λB

− π

4

)
,

(A.6)
with the correlation length for bending fluctuations given by

λB =
(

lb
p

α

)1/4

. (A.7)

Since G(z − z ′) exponentially decreases at |z − z ′| � λB, the
centerline of each rod is effectively confined within a cylinder
with the radius

d = √
G(0). (A.8)

From equations (A.6)–(A.8) we recover equations (24)
and (25) of the main text. Note that this approximation may
also be used at finite L provided that L � λB.

From similar calculations we find another useful
correlation function:〈

dr j,l(z)

dz
· dr j,l(z ′)

dz′

〉
= λB

lb
p

exp

(
−|z − z ′|√

2λB

)

× cos

( |z − z′|√
2λB

+ π

4

)
. (A.9)

The special case of this correlation function at z = z ′
defines the mean square fluctuations of the tilt angle ψ given
by equation (27) of the main text.

A.2. Variational free energy

To calculate ln(δZeff), we use that

− 1

N L

∂

∂α
ln(δZeff) = 〈r2〉eff

2
= d2

2
. (A.10)

After integration, we find

− 1

N L
ln(δZeff) =

(
2

d2lb
p

)13

, (A.11)

where the integration constant was selected so that Fund = 0 at
lb
p → ∞.

To calculate 〈δE{r j,l(z)}−δEeff{r j,l(z)}〉eff, we utilize that
for any ergodic random process r j,l(z) [57]

〈 f {r j,l(z)}〉eff ≡
〈∫

f̃ (r j,l(z)) dz

〉

eff

= L〈 f̃ (r j,l(z))〉eff

= L
∫

f̃ (r)P(r) dr (A.12)

where f̃ (r) is an arbitrary function of r. The probability
density P(r) for a Gaussian random process is given by [57]

P(r) = 1

4π2

∫
du e−iu〈eiur′(z)〉eff = 1

π
e
− r2

〈r2〉 = 1

π
e− r2

d2 ,

(A.13)
where we took into account that r(z) is a 2D vector.

From equations (2), (9), (12), (13) and (16), we find

1

N L
〈δE{r j,l(z)} − δEeff{r j,l(z)}〉eff = α0 − α

2
d2

+ 3〈δu j,l,i (R0, z)〉eff, (A.14)

where δu j,l,i (R0, z) is given by equation (17) of the main text.
Since 〈δu j,l,i (R0, z)〉eff does not depend on j, l or i , we

may calculate 〈δu j,l,3(R0, z)〉eff (see figure 1(b)). At small x j,l

and y j,l displacements of the molecules ( j, l) and ( j +1, l), i.e.
|x j+1,l − x j,l |/R0 � 1 and |y j+1,l − y j,l|/R0 � 1:

δr j,l,3(z) ≈ (x j+1,l − x j,l), (A.15)

where we neglected the second-order terms with respect
to x j+1,l − x j,l and y j+1,l − y j,l . After substituting
equations (17), (A.14) and (A.15) into equations (A.12)
and (A.13), we then find

〈δu j,l,3(R0, z)〉eff ≈ 1

d
√

2π

×
[

ucyl(R0, 2a − R0)

∫ 2a−R0

−∞
exp

(
− δx2

2d2

)
d (δx)

+
∫ R0−2a

2a−R0

ucyl(R0, δx) exp

(
− δx2

2d2

)
d(δx)

+ ucyl(R0, R0 − 2a)
∫ ∞

R0−2a
exp

(
− δx2

2d2

)
d(δx)

]
(A.16)

where we changed the integration variables from x j+1,l and
x j,l to δx = x j+1,l − x j,l and x j+1,l + x j,l and integrated out
x j+1,l + x j,l .

At κa � 1, substitution of equation (18) into equation
(A.16) yields

〈δu j,l,3(R0, z)〉eff ≈ ξ 2
eff

√
2π exp(−κR0)

lB(κR0)1/2
γ (κ(R0 − 2a), κd)

+ ξ 2
effπ	0 exp(−2κR0)

lB(κR0)
γ (2κ(R0 − 2a), 2κd)

(A.17)

where γ (x, y) is defined by equation (30). Finally,
after substituting equations (A.11), (A.14) and (A.17) into
equation (13), we arrive at equation (29) of the main text.
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